Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes

نویسندگان

  • Mehdi Khodadadian
  • Ronak Jalili
  • Mohammad Taher Bahrami
  • Gholamreza Bahrami
چکیده

An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping voltammetry. The electrooxidation of Hy-HCl at MWCNT/GCE occurred at ~32 mV which was lower than that observed at bare GCE (~52 mV). The optimum working conditions for determination of the drug using differential-pulse adsorptive stripping voltammetry (DPAdSV) were established. The method exhibited linear responses to Hy-HCl in the concentration range 10-220 nM with a detection limit of 2.7 nM. The proposed method was successfully applied to the determination of this compound in pharmaceutical dosage forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes

An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...

متن کامل

Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes

An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...

متن کامل

Simultaneous Voltammetric Measurement of Ascorbic Acid, Epinephrine, Uric Acid and Tyrosine at a Glassy Carbon Electrode Modified with Nanozeolite-Multiwall Carbon Nanotube

In this study, incorporation of iron ion-doped natrolite nanozeolite, multi-wall carbon nanotubes into chitosan-coated glassy carbon electrode for the simultaneous determination of ascorbic acid, epinephrine, uric acid and tyrosine is studied. The results show that the combination of multi-wall carbon nanotubes and iron ion-doped natrolite zeolite causes a dramatic enhancement in the sensitivit...

متن کامل

Simultaneous Voltammetric Determination of Ascorbic Acid and Uric Acid Using a Modified Multiwalled Carbon Nanotube Paste Electrode

This paper describes the development, electrochemical characterization and utilization of novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of ascorbic acid (AA). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of AA about 235 mV ...

متن کامل

Electrochemical studies of tamsulosin hydrochloride using multiwalled carbon nanotube-modified glassy carbon sensor

A differential pulse voltammetric sensor for the determination of tamsulosin hydrochloride (TAM) using multiwalled carbon nanotubes (MWNTs)–Nafion-modified glassy carbon electrode (GCE) has been developed. MWNTs were dispersed in water with the help of Nafion and were used to modify the surface of GCE via solvent evaporation. At MWNT-modified electrode, TAM gave a well-defined oxidation peak at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017